
The REVERE project: experiments with the application
of probabilistic NLP to systems engineering

Paul Rayson1, Luke Emmet2, Roger Garside1 and Pete Sawyer1

1Lancaster University, Lancaster, UK. LA1 4YR
{paul, rgg, sawyer}@comp.lancs.ac.uk

2Adelard, Coborn House, 3 Coborn Road, London UK. E3 2DA
loe@adelard.co.uk

Abstract. Despite natural language's well-documented shortcomings as a
medium for precise technical description, its use in software-intensive systems
engineering remains inescapable. This poses many problems for engineers who
must derive problem understanding and synthesise precise solution descriptions
from free text. This is true both for the largely unstructured textual descriptions
from which system requirements are derived, and for more formal documents,
such as standards, which impose requirements on system development
processes. This paper describes experiments that we have carried out in the
REVERE1 project to investigate the use of probabilistic natural language
processing techniques to provide systems engineering support.

1. Introduction

Despite natural language's well-documented shortcomings as a medium for precise
technical description, its use in software-intensive systems engineering [1]
(henceforth referred to simply as systems engineering) remains inescapable. The
products of the systems engineering process (requirements specifications, acceptance
test plans, etc.) almost always have to employ natural language in order to describe
the desired system properties for a heterogeneous readership. Recognising this,
several researchers [2, 3, 4, 5, 6, 7] have used natural language processing (NLP)
tools for the analysis, paraphrasing and quality evaluation of documents produced by
the systems engineering process. There has been little attention paid to the main focus
of this paper, however: tools to assist the analysis of natural language inputs to
systems engineering.

In developing the requirements for a system, systems engineers face the need to
understand large volumes of information. This information is almost always
expressed in natural language. This is true of information elicited from human
stakeholders (users, customers, domain experts, marketing experts, etc.), and
information derived from technical and business documents. Systems engineers

1 REVerse Engineering of REquirements. EPSRC Systems Engineering for Business Process Change

(SEBPC) programme project number GR/MO4846. Further details can be found at:
http://www.comp.lancs.ac.uk/computing/research/cseg/projects/revere/

collect this information to build up their understanding of the system requirements
and the constraints on the system and on the development process. Hence, for
example, requirements information elicited from stakeholders may need to be
analysed in the context of information about the system's operational environment and
standards that regulate the system's application domain. A systems engineer for a
railway signalling system, for example, might be faced with having to understanding
documents describing complex signalling control processes, statements of
requirements from many different stakeholders, specifications of equipment to which
the system will have an interface, engineering standards and railway legislation.

Whatever the source of the information, its analysis is a difficult task that requires
skill, domain knowledge and experience and is almost completely unsupported by
tools. This is a particular problem where the volume of the information is large and
the sources of information diverse.

In this paper we describe our work in the REVERE project, where we are
investigating the feasibility of using probabilistic NLP techniques to improve this
situation. The work is illustrated with two examples: analysis of a large corpus of
transcripts and field notes of an ethnographic study of an air-traffic control (ATC)
application (reported elsewhere [8]), and analysis of a new safety-critical systems
standard. These both serve to illustrate the principles involved. In combination, the
two examples illustrate the promise of the approach and highlight some issues that
require further attention for the approach to be widely exploitable.

2. Natural language in Systems Engineering

Systems engineering is concerned mainly with identification and analysis of the
system requirements, identification of a configuration of components (the system
architecture) that will satisfy the requirements, and verification that once completed
and integrated, the configuration of components does meet the requirements. To do
this, the system requirements must be acquired and analysed. These requirements are
always constrained by many factors that include budgetary limits, the operational
environment, technical feasibility, the need for standards compliance [9] and many
others. Hence, many factors must be understood and balanced by a systems engineer.
Natural language invariably plays a large part in the systems engineering process and
this fact has attracted sporadic interest in the employment of NLP techniques in
systems engineering. Work has focused on both the products of the process and inputs
to the process.

2.1 Natural language products of the systems engineering process

Products of the process include specifications of the requirements and test plans. The
use of natural language is needed to enable these documents to be read by a
heterogeneous readership that includes both engineers and customers. However, it is
hard to describe complex concepts simply, clearly and concisely in natural language.
In recognition of this, several research projects [2, 4, 6, 7] have investigated the
synthesis of conceptual models (object models, data-flows, etc) from natural language

descriptions. These have employed rule-based NLP and so require documents written
using natural language subsets as their input.

2.2 Natural language inputs to the systems engineering process

The inputs to the process include human-sourced information and formal documents.
Human-sourced information is information elicited directly from system stakeholders.
It may comprise, for example, unstructured textual description and transcripts of user
interviews. It is one of the raw materials from which the system requirements are
derived. Formal documents include standards, process descriptions, user manuals and
specifications of other systems. They are often needed to complement human-sourced
information as sources of additional requirements and constraints. They are also a
crucial source of domain knowledge needed to interpret the requirements and
constraints. The crucial point is that a great deal of intellectual work is needed to
identify a coherent and cohesive set of system requirements. These are never pre-
formed but have to be synthesised from a variety of sources that contain information
which may be poorly structured, contradictory, at varying levels of detail and of
uncertain relevance.

The systems engineer must use whatever information resources are available to
derive the requirements [10]. This typically entails an iterative process of inferring
key abstractions (stakeholders, roles, tasks, domain objects, etc.) and verifying these
against the structure and behaviour of existing systems. Hence, while work concerned
with products of the systems engineering process relies upon a pre-existing
formulation of the system requirements, work on inputs to the process must cope with
much messier natural language text.

Dan Berry and colleagues have studied this problem over a number of years [11,
12, 13]. Their work is based on the use of pattern matching techniques to extract
abstractions. The frequency with which the abstractions occur within the text is taken
as an indication of the abstractions' relevance. The authors of the work recognise this
assumption has been challenged by work on automatic abstraction in other domains,
but argue that it appears to be valid in the context of requirements analysis.

Both Berry's work, and similarly motivated work by [14], explicitly recognise that
NLP cannot automate the system engineer's job. The system engineer still has to read
the myriad documents. Instead, the tools seek to mitigate the problems of information
overload. They do this by compensating for human weakness (such as attention lapses
due to tiredness) by helping to flag abstractions that would repay detailed manual
analysis. This is a refreshingly realistic view of the potential for NLP that is informed
by a real understanding of the problems of system engineering, and one that forms the
starting point for our own work.

3. The REVERE project

Like Berry's work, the REVERE project is concerned with supporting systems
engineers faced by the need to extract information from large volumes of unstructured
text. We do not believe that it is possible to fully automate this. We do, however,

believe it is feasible to help provide a 'quick way in' to unfamiliar documents, in order
to help focus system engineers' attention on candidates for important abstractions. An
important requirement for REVERE is that the approach must scale. This immediately
rules out purely rule-based NLP because of the diversity of the documents that may
have to be analysed. We do not believe that the pattern-matching alone can offer
sufficient coverage or be sufficiently efficient for the kind of interactive support that
we aim to provide.

Our approach is therefore to exploit probabilistic NLP techniques. Instead of
attempting to model the grammar of a natural language as a set of rules, the class of
probabilistic tools that we are interested in classifies words on the statistical
likelihood of them being a member of a particular syntactic or semantic category in a
particular context. The probabilities are derived from large corpora of free text which
have already been analysed and 'tagged' with each word's syntactic or semantic
category. Extremely large corpora have been compiled (the British National Corpus
consists of approximately 100 million words [15]). For some levels of analysis,
notably part-of-speech tagging, probabilistic NLP tools have been able to achieve
levels of accuracy and robustness that rule-based techniques cannot approach.

Probabilistic tools do not attempt to automate understanding of the text. Rather,
they extract interesting properties of the text that a human user can combine and use
to infer meaning. Evidence from other domains suggests that such tools can
effectively support analysis of large documents. For example, in [16] probabilistic
NLP tools were used to quickly confirm the results of a painstaking manual discourse
analysis of doctor-patient interaction. In this application, they were also able to reveal
information that had not been discovered manually.

Probabilistic NLP techniques meet the requirement for scalability. The execution
time of the tagging process varies approximately linearly with the document size.
Once the text has been tagged, retrieval and display tools are needed to allow the user
to interact with the document. These use the tags to provide views on the document
that reveal interesting properties and suppress the bulk of text. They do this in a way
that is largely independent of the size of the document. Hence the user is protected
from information overload by being able to be selective about the information they
want to extract.

4. The REVERE tools

We have adapted and experimented with a set of existing NLP tools developed at
Lancaster for the processing of English language text. The most important of these is
CLAWS [17]. CLAWS uses a statistical hidden Markov model technique and a rule-
based component to identify the parts-of-speech (POS) of words to an accuracy of 97-
98%. One obvious application of this in a system engineering context is the
identification of modal verbs such as 'shall', 'must', 'will', 'should', etc. Expressions of
need, desire, etc., consistent with user or system requirements can therefore be located
in a document very easily and without the need to construct complex regular
expressions or search templates. Even this basic level of analysis goes beyond what is

provided by the current generation of requirements and document management tools
that are becoming widely used by systems engineers.

A semantic analyser [18] uses the POS-tagged text to assign semantic tags that
represent the general sense field of words from a lexicon of single words and an idiom
list of multi-word combinations (e.g. ‘as a rule’). These resources contain
approximately 52000 words or idioms and classify them according to a hierarchy of
semantic classes. For example, the tag A1.5.1 represents words or idioms meaning
Using, which is a subclass of general and abstract terms. Words that would be
assigned this tag (in the appropriate POS context) include user, end-user and
operator. Similarly, the tag X2.4 is a subclass of Psychological actions, states and
processes and would be assigned to terms meaning Investigate, such as search,
browse and look for. The tagset has been crafted from analysis of a large corpus of
English text. One of the things we are investigating is the extent to which it would be
applicable to the technical domain(s) of systems engineering.

These tools are integrated into a retrieval and display tool called WMATRIX (a
development of XMATRIX [19]). This embodies a process model that leads the user
through a sequence of steps needed to apply the POS and semantic tagging and other
types of analysis that, once complete, allow the user to interact with abstractions of
the text. Many of these abstractions are provided by frequency profiling. At the most
basic, this produces a simple concordance of individual words and displays them in
the context of their surrounding text. Frequency profiling becomes more useful when
a semantically tagged document can be compared against a normative corpus: a large
representative body of pre-tagged text. Comparison with the normative corpus allows
information to be extracted from a document by searching for statistically significant
deviations from the frequency norm suggested by the corpus. This exploits the
tendency for words or expressions to have different semantic profiles in different
domain contexts. A general usage normative corpus is likely to reveal many of the
dominant domain entities and roles as words or expressions that occur with a
frequency that deviates grossly from the norm. These are the kinds of abstractions that
an engineer must identify when analysing the requirements for a system, since they
help build up a picture of what the system must do and of the people and objects in
the system's environment.

With complex systems, there are often so many diverse requirements that some
separation of concerns needs to be imposed on the problem space in order to
understand the requirements and roles of different stakeholders. This is sometimes
supported by the use of viewpoints on a system. A viewpoint can be thought of as a
partial specification [20]; a subset of the system requirements that represent those
requirements unique to a particular stakeholder's perspective of what the system must
do. The engineer can use WMATRIX to search a document for roles, since roles often
correspond to stakeholders. By finding the set of candidate roles and viewing where
they occur in the body of the text, it is possible for the engineer to verify whether the
roles are important and build up an understanding of how they interact with the
system's environment.

To provide a snapshot of the results so far, and illustrate some of the key issues,
we now briefly describe two examples. These are an analysis of the requirements for
an air traffic control system and an evaluation of a new standard for the development
of safety-critical systems.

5. Example 1: Air traffic control

The target documents are field reports of a series of ethnographic studies at an air
traffic control (ATC) centre. This formed part of a study of ATC as an example of a
system that supports collaborative user tasks [8]. The documents consist of both the
verbatim transcripts of the ethnographer’s observations and interviews with
controllers, and of reports compiled by the ethnographer for later analysis by a multi-
disciplinary team of social scientists and systems engineers. The field reports form an
interesting study because they exhibit many characteristics typical of information. The
volume of the information is fairly high (103 pages) and the documents are not
structured in a way (say around business processes or system architecture) designed to
help the extraction of requirements. Two stages in the analysis are shown: a search for
candidate roles; and an analysis against a normative corpus.

5.1 Role analysis

Roles are likely to emerge from several kinds of analysis using WMATRIX. Corpus
analysis will often reveal a role as a noun with a semantic category that has a
frequency distribution that varies significantly from that of the normative corpus. In
formal documents certain parts of speech are often associated with roles (and other
entities of the domain). In a standards document, for example, modal verbs often
reveal roles by their context, such as: "The Developer shall define the safety test to
be conducted… ”

Fig. 1. Candidate roles in air traffic control

In this early stage of our analysis of the ATC field reports, an initial role analysis
was performed by a simple combination of POS analysis and regular expressions.
These are often revealed as human agent nouns with common endings for job-titles
(such as 'er' or 'or', 'et' or 'ot', 'man' or 'men', etc) and adjectives that are commonly
used without their accompanying noun ('head', 'chief', 'sub', etc.). Using this, the
candidate roles that occur most frequently in the ATC document (and hence imply
significance) are shown in figure 1.

Figure 1 shows a mixture of words that are clearly not roles (e.g. sector, computer,
manchester, roger), but also some that are: controller, chief, wingmen, coordinator
and ethnographer. Ethnographers are roles in the analysis rather than the application
domain, but the other three are all roles or stakeholders, with their own requirements
or viewpoint on ATC. Theories about whether the candidate roles are significant or
not can be tested by viewing their context. Figures 2 and 3 show examples of the
contexts in which occurrences of 'controller' and 'chief' occur.

Fig. 2. References to the role name controller

Fig. 3. References to the role name chief

The examples illustrate that by browsing the roles, the systems engineer can
impose a viewpoint on the mass of information that allows them to build up a picture
of the corresponding stakeholders' activities within the system's application domain.
The first lines in each of figure 2 and 3, for example, include an explanation of both
roles' responsibilities. Of course, there is also much 'noise' and sometimes synonyms
are used for a single role. However, by using this technique, we have isolated sets of
requirements for each of the roles identified.

5.2 Corpus analysis

The motivation for corpus analysis is that entities that are significant to the
application domain will be revealed by the relative frequency of their appearance in
the text when compared against a normative corpus. The normative corpus that we
used was a 2.3 million-word subset of the BNC derived from the transcripts of spoken
English. Using this corpus, the most over-represented semantic categories in the ATC
field reports are shown in table 1. The log-likelihood figure is a statistical measure of
deviation from the word's frequency deviation from the normative corpus. The higher
the figure, the greater the deviation.

Table 1. Over-represented categories in ATC field reports

Log-
likelihood

Semantic
tag

Word sense (examples from the text)

3366 S7.1 power, organising (‘controller’, ‘chief’)
2578 M5 flying (‘plane’, ‘flight’, ‘airport’)

988 O2 general objects (‘strip’, ‘holder’, ‘rack’)
643 O3 electrical equipment (‘radar’, ‘blip’)
535 Y1 science and technology (‘PH’)
449 W3 geographical terms (‘Pole Hill’, ‘Dish Sea’)
432 Q1.2 paper documents and writing (‘writing’,

‘written’, ‘notes’)
372 N3.7 measurement (‘length’, ‘height’, ‘distance’,

‘levels’, ‘1000ft’)
318 L1 life and living things (‘live’)
310 A10 indicating actions (‘pointing’, ‘indicating’,

‘display’)
306 X4.2 mental objects (‘systems’, ‘approach’, ‘mode’,

‘tactical’, ‘procedure’)
290 A4.1 kinds, groups (‘sector’, ‘sectors’)

With the exception of Y1 (an anomaly caused by an interviewee’s initials being
mistaken for the PH unit of acidity), all of these semantic categories include important
objects, roles, functions, etc. in the ATC domain. The frequency with which some of
these occur, such as M5 (flying), are unsurprising. Others are more revealing about
the domain of ATC. Figure 4 shows some of the occurrences of the semantic category
O2 (general objects) being browsed by a user of WMATRIX. The important
information revealed here is the importance of 'strips' (formally, 'flight strips'). These
are small pieces of cardboard with printed flight details that are the most fundamental
artefact used by the air traffic controller to manage their air space. Examination of
other words in this category also reveal that flight strips are held in 'racks' to organise
them according to (for example) aircraft time-of-arrival.

Fig. 4. Browsing the semantic category O2

Similarly, browsing the context for Q1.2 (paper documents and writing) would
reveal that controllers annotate flight strips to record deviations from flight plans, and
L1 (life, living things) would reveal that some strips are 'live', that is, they refer to
aircraft currently traversing the controller's sector. Notice also that the semantic

categories' deviation from the normative corpus can also be expected to reveal roles.
In this example, the frequency of S7.1 (power, organising) confirms the importance of
the roles of 'controllers' and 'chiefs', identified by the role analysis described above.

Using the REVERE tools does not automate the task of identifying abstractions,
much less does it produce fully formed requirements that can be pasted into a
specification document. Instead, it helps the engineer quickly isolate potentially
significant domain abstractions that require closer analysis. It cannot guarantee
completeness. For example, some important abstractions may be overlooked because
their frequency of occurrence in the document being analysed is close to that of the
normative corpus. In addition, word semantics may be domain-specific leading to
them being tagged wrongly (in the domain context), making it easy to overlook their
significance. This issue is explored in the next example.

6. Example 2: A Standards Document

This example explores the REVERE tools' utility for assessing the impact of
standards in systems engineering. The example is based upon the publication of a new
national standard for the procurement of safety-critical military systems
(approximately 21000 words). In all domains, systems engineers are constrained by
regulations, standards and best operating practice, all of which may be documented in
a number of sources. Safety-critical systems engineering processes tend to be
particularly tightly regulated and document-centric. Systems engineers working in
safety critical domains therefore need to acquire a good awareness of the standards
landscape and how individual standards apply to different projects. This obviously
requires a lot of reading and interpretation of standards documents. This might be to:
• keep abreast of emerging standards in their domain in order to monitor

international best practice;
• anticipate the effect of new standards on future international, national and sector

(such as defence) standards;
• build competence for possible future work in the market for which the standard

was written;
• identify a set of key attributes to assess against the standard to establish

compliance.
Systems engineering standards are like meta requirements documents - they

specify generic requirements on the development processes and their products within
a domain. In contrast to the class of documents used in the ATC experiment,
standards tend to be strongly structured and highly stylised in the lexical and syntactic
conventions used, and in the semantics attached to certain terms. In particular, modal
verbs are frequently used to signify where system properties or development practices
are mandatory or advisory.

Our analysis of the standard had two goals: to determine the weight given to
different development practices mandated or advised by the standard; and to identify
the roles of people who would use or be regulated by the standard. These were
performed using POS and role analysis.

6.1 POS analysis

WMATRIX allows the engineer to isolate words that are assigned any given POS tag.
In standards documents, words given the modal verb tag ('VM') are of particular
interest. Figure 5 illustrates the frequency profile of all the standard's modal verbs.

Fig. 5. Modal verbs' occurrence in the standard

The most common modal verb in the standard is 'shall'. In standards (and other
types of specification documents) a convention is often adopted in which 'shall' is
used as a keyword in clauses that denote mandatory requirements. The convention
often extends to using other modal verbs to denote weaker obligations. Any of the
modal verbs may also appear in normal English usage in informal, descriptive
sections of the document.

Fig. 6. Occurrences of 'should' in the standard

Once identified, the modal verbs were browsed in their context within the standard
to build up a picture of the conventions used in the standard. This was essentially to
see if their usage complied with our expectations. We started by browsing the
occurrences of 'shall', to distill a view of the mandatory requirements of the standard.
As expected, most of the occurrences of 'shall' in the standard occur in formal clauses
representing mandatory requirements. However, documents cannot always be relied
upon to use modal verbs consistently. This is illustrated in figure 6, which shows a
subset of the 39 occurrences of 'should'. Normally, where 'should' appears in a formal
clause of a standard, it is used to denote an advisory requirement. However, to avoid
any ambiguity, it is common for a standards document to contain a definition of the
convention used to differentiate between mandatory and advisory requirements. Our
suspicion was aroused when browsing the lists of modal verb contexts failed to reveal
such any such definition. We then discovered the following occurrence of 'should' in
the standard: "17.7.6 Operators should be qualified and trained … ". This turns out to

represent a mandatory requirement and hence represents a violation of the lexical
convention that we had assumed for the standard.

Our exploration of the document's use of modal verbs revealed mistaken
assumptions about the conventions used by the document. We eventually isolated the
clause in the standard that defined the conventions used: mandatory requirements
were indicated by bold text and advisory requirements were written in plain text. Our
tools were unable to detect this easily because the tools currently do not include any
formatting analysis.

Identifying the paragraph that defined the convention was complicated because we
had to find words with semantic tags that corresponded to mandatory and advisory.
This requires experimentation with several tags:
• S6 'Obligation and necessity'
• S8 'Helping/hindering'
• X7 'Wanting'

The terminology in the standard for a mandatory requirements was simply the
word 'requirement'. This was tagged X7. The terminology used for an advisory
requirement was the word 'guidance'. This was the tag S8. Clearly, in a standards
document context, these two terms, as well as others such as 'mandatory' and
'advisory' should all be given the same tag. This revealed a problem in the use of a
tagset derived from the analysis of general English for the analysis of technical or
formal documents.

6.2 Role analysis

In this stage of the analysis we were interested in discovering the roles identified for
people who would apply or be constrained by the standard. This is important because
different roles will have different viewpoints on the standard. For example,
developers are typically interested in how to comply with a standard, while assessors
are interested in how to evaluate a developer's work against a standard. In its
introduction section, the standard identifies a set of roles as follows: "This standard
applies to the Customer, Developer, Auditor and Evaluator of the system". By
applying the REVERE tools' role analysis we identified several other candidates for
roles in the text. The most commonly occurring are illustrated in figure 7.

Fig. 7. Candidate roles identified in the standard
Of course, many of these will be synonyms or special cases of the primary roles

explicitly identified by the document. For example, the (prime) contractor is treated as
the developer. However, others that are not explicitly identified do appear to be
significant. For example, Figure 8 illustrates occurrences of references to users (or

end users) in the document. While these may not be directly affected by the standard,
there is an implication that they will be involved in a development project that
complies to the standard.

Fig. 8. Occurrences of the role 'users' in the standard

7. Conclusions

Our work on the REVERE project is motivated by the potential to provide the means
for rapid analyses of complex and voluminous free text that often forms an input to
systems engineering projects. The need for rigour in systems engineering means that a
deep understanding of key information has to be acquired by the systems engineer.
However, faced with a large volume of information of uncertain relevance and
quality, tools that supported rapid but fairly shallow analysis would be of potential
value to systems engineers. Although shallow, the analysis supported by such tools
would help the systems engineer to identify where they needed to focus their
attention. This would mitigate attentional losses caused by information overload.

The paper has described two experiments using a set of tools that we have
developed. These include POS and semantic taggers and are integrated by an end-user
tool called WMATRIX. The experiments (a third is reported elsewhere [21]) reveal
both promise for the approach and limitations of our existing tools.

The principal defects appear to be caused by the need to tailor our semantic tagger
to a technical domain. Despite this, the results of our work to date lead us to believe
that, just as probabilistic NLP has emerged in commercial products in other domains
(notably word processing and speech recognition), it also has the potential to form a
key component of next-generation systems engineering tools.

It is crucial to the understanding of our work that we do not aim for completeness;
systems engineering will always rely upon human skill and expertise. However, by
rejecting as impossible the use of NLP for fully automating any aspect of systems
engineering, we are able to focus on our goal of supporting systems engineers' manual
analysis of documents. Initial results in a variety of systems engineering domains
suggests that the REVERE tools are effective in helping engineers identify crucial
domain abstractions and test theories about what abstractions exist, their importance
and how they are inter-related in the domain.

References

1. Stevens, R., Brook, P., Jackson, K., Arnold, S.: Systems engineering: coping with
complexity, Prentice-Hall, 1998.

2. Rolland, C., Proix, C.: A Natural Language Approach for Requirements Engineering,
Lecture Notes in Computer Science, Vol. 593, 1992.

3. Burg, J., van de Riet, R.: COLOR-X: Object Modeling profits from Linguistics, Proc.
Second International Conference on Building and Sharing of Very Large-Scale Knowledge
Bases (KB&KS'95), Enschede, The Netherlands, 1995.

4. Cyre, W., Thakar, A.: Generating Validation Feedback for Automatic Interpretation of
Informal Requirements, in Formal Methods in System Design, Kluwer, 1997.

5. Rosenburg, L., Hammer, T., Huffman, L.: Requirements, Testing & Metrics, Proc. 15th

Annual Pacific Nothwest Software Quality Conference, Utah, USA, 1998.
6. Ambriola, V., Gervasi, V.: Experiences with Domain-Based Parsing of Natural Language

Requirements, Proc. 4th International Conference NLDB '99, Klagenfurt, Austria, 1999.
7. Steuten, A., van de Reit, R., Dietz, J.: Linguistically Based Conceptual Modeling of

Business Communication, Proc. 4th International Conference NLDB '99, Klagenfurt,
Austria, 1999.

8. Bentley R., Rodden T., Sawyer P., Sommerville I, Hughes J., Randall D., Shapiro D.:
Ethnographically-informed systems design for air traffic control, Proc. CSCW '92, Toronto,
November 1992.

9. Emmerich, W., Finkelstein, A., Montangero, C., Antonelli, S., Armitage, S., Stevens, R.:
Managing Standards Compliance, IEEE Trans. Software Engineering, 25 (6), 1999.

10.Butler, K., Esposito, C., Hebron, R.: Connecting the Design of Software to the Design of
Work, Communications of the ACM. 42 (1), 1999.

11.Berry, D., Yavne, N., Yavne, M.: Application of Program Design Language Tools to
Abbott’s method of Program Design by Informal Natural Language Descriptions, Journal of
Software and Systems, 7, 1987.

12.Aguilera, C., Berry, D.: The Use of a Repeated Phrase Finder in Requirements Extraction,
Journal of Systems and Software, 13 (9), 1990.

13.Goldin, L., Berry, D.: AbstFinder, A Prototype Natural Language Text Abstraction Finder
for Use in Requirements Elicitation, Automated Software Engineering, 4, 1997.

14.Fliedl, G., Kop, C., Mayr, H., Mayerthaler, W., Winkler, C.: Linguistically Based
Requirements Engineering - the NIBA Project, Proc. 4th International Conference NLDB
'99, Klagenfurt, Austria, 1999.

15.Aston, G. and Burnard, L.: The BNC Handbook: Exploring the British National Corpus with
SARA, Edinburgh University Press, 1998.

16.Thomas, J., Wilson, A.: Methodologies for Studying a Corpus of Doctor-Patient Interaction,
in Thomas, J. and Short, M. (eds.) Using Corpora for Language Research, Longman, 1996.

17.Garside, R., Smith, N.: A Hybrid Grammatical Tagger: CLAWS4, in Garside, R., Leech, G.,
and McEnery, A. (eds.) Corpus Annotation: Linguistic Information from Computer Text,
Longman, 1997.

18.Rayson, P., and Wilson, A.: The ACAMRIT semantic tagging system: progress report, Proc.
Language Engineering for Document Analysis and Recognition (LEDAR), Brighton,
England. 1996.

19.Rayson, P., Leech, G., and Hodges, M.: Social differentiation in the use of English
vocabulary: some analyses of the conversational component of the British National Corpus,
International Journal of Corpus Linguistics. 2 (1), 1997.

20.Jackson, D. and Jackson, M.: Problem decomposition for reuse, BCS/IEE Software Eng. J.,
11 (1), 1996.

21.Rayson, P., Garside, R., Sawyer, P.: Recovering Legacy Requirements, Proc. Fifth
International Workshop on Requirements Engineering: Foundations of Software Quality
(REFSQ’99), Heidelberg, Germany, 1999.

